منابع مشابه
Joint AVO inversion, wavelet estimation and noise-level estimation using a spatially coupled hierarchical Bayesian model
The main objective of the AVO inversion is to obtain posterior distributions for P-wave velocity, S-wave velocity and density from specified prior distributions, seismic data and well-log data. The inversion problem also involves estimation of a seismic wavelet and the seismic-noise level. The noise model is represented by a zero mean Gaussian distribution specified by a covariance matrix. A me...
متن کاملAutomatic relevance determination based hierarchical Bayesian MEG inversion in practice
In recent simulation studies, a hierarchical Variational Bayesian (VB) method, which can be seen as a generalisation of the traditional minimum-norm estimate (MNE), was introduced for reconstructing distributed MEG sources. Here, we studied how nonlinearities in the estimation process and hyperparameter selection affect the inverse solutions, the feasibility of a full Bayesian treatment of the ...
متن کاملInversion of hierarchical Bayesian models using Gaussian processes
Over the past decade, computational approaches to neuroimaging have increasingly made use of hierarchical Bayesian models (HBMs), either for inferring on physiological mechanisms underlying fMRI data (e.g., dynamic causal modelling, DCM) or for deriving computational trajectories (from behavioural data) which serve as regressors in general linear models. However, an unresolved problem is that s...
متن کاملGeo-level Bayesian Hierarchical Media Mix Modeling
Media mix modeling is a statistical analysis on historical data to measure the return on investment (ROI) on advertising and other marketing activities. Current practice usually utilizes data aggregated at a national level, which often suffers from small sample size and insufficient variation in the media spend. When sub-national data is available, we propose a geo-level Bayesian hierarchical m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2016
ISSN: 0960-3174,1573-1375
DOI: 10.1007/s11222-016-9704-8